Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3159, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605040

RESUMO

How RNA-binding proteins (RBPs) convey regulatory instructions to the core effectors of RNA processing is unclear. Here, we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by Unkempt. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for the reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface.


Assuntos
Proteínas de Ligação a RNA , RNA , Animais , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Peptídeos/metabolismo
2.
Biol Open ; 13(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38304969

RESUMO

Mutations in genes that affect mitochondrial function cause primary mitochondrial diseases. Mitochondrial diseases are highly heterogeneous and even patients with the same mitochondrial disease can exhibit broad phenotypic heterogeneity, which is poorly understood. Mutations in subunits of mitochondrial respiratory complex I cause complex I deficiency, which can result in severe neurological symptoms and death in infancy. However, some complex I deficiency patients present with much milder symptoms. The most common nuclear gene mutated in complex I deficiency is the highly conserved core subunit NDUFS1. To model the phenotypic heterogeneity in complex I deficiency, we used RNAi lines targeting the Drosophila NDUFS1 homolog ND-75 with different efficiencies. Strong knockdown of ND-75 in Drosophila neurons resulted in severe behavioural phenotypes, reduced lifespan, altered mitochondrial morphology, reduced endoplasmic reticulum (ER)-mitochondria contacts and activation of the unfolded protein response (UPR). By contrast, weak ND-75 knockdown caused much milder behavioural phenotypes and changes in mitochondrial morphology. Moreover, weak ND-75 did not alter ER-mitochondria contacts or activate the UPR. Weak and strong ND-75 knockdown resulted in overlapping but distinct transcriptional responses in the brain, with weak knockdown specifically affecting proteosome activity and immune response genes. Metabolism was also differentially affected by weak and strong ND-75 knockdown including gamma-aminobutyric acid (GABA) levels, which may contribute to neuronal dysfunction in ND-75 knockdown flies. Several metabolic processes were only affected by strong ND-75 knockdown including the pentose phosphate pathway and the metabolite 2-hydroxyglutarate (2-HG), suggesting 2-HG as a candidate biomarker of severe neurological mitochondrial disease. Thus, our Drosophila model provides the means to dissect the mechanisms underlying phenotypic heterogeneity in mitochondrial disease.


Assuntos
Drosophila , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais , Animais , Humanos , Drosophila/genética , Drosophila/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Fenótipo
3.
bioRxiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37790431

RESUMO

RNA-binding proteins (RBPs) are key regulators of gene expression, but how RBPs convey regulatory instructions to the core effectors of RNA processing is unclear. Here we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a deeply conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by the recruiting RBP. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface, with implications for the evolution and function of RBP-operated regulatory networks.

4.
PLoS Genet ; 19(7): e1010793, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37399212

RESUMO

Mutations in subunits of the mitochondrial NADH dehydrogenase cause mitochondrial complex I deficiency, a group of severe neurological diseases that can result in death in infancy. The pathogenesis of complex I deficiency remain poorly understood, and as a result there are currently no available treatments. To better understand the underlying mechanisms, we modelled complex I deficiency in Drosophila using knockdown of the mitochondrial complex I subunit ND-75 (NDUFS1) specifically in neurons. Neuronal complex I deficiency causes locomotor defects, seizures and reduced lifespan. At the cellular level, complex I deficiency does not affect ATP levels but leads to mitochondrial morphology defects, reduced endoplasmic reticulum-mitochondria contacts and activation of the endoplasmic reticulum unfolded protein response (UPR) in neurons. Multi-omic analysis shows that complex I deficiency dramatically perturbs mitochondrial metabolism in the brain. We find that expression of the yeast non-proton translocating NADH dehydrogenase NDI1, which reinstates mitochondrial NADH oxidation but not ATP production, restores levels of several key metabolites in the brain in complex I deficiency. Remarkably, NDI1 expression also reinstates endoplasmic reticulum-mitochondria contacts, prevents UPR activation and rescues the behavioural and lifespan phenotypes caused by complex I deficiency. Together, these data show that metabolic disruption due to loss of neuronal NADH dehydrogenase activity cause UPR activation and drive pathogenesis in complex I deficiency.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , NADH Desidrogenase/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Neurônios/metabolismo , Drosophila/metabolismo , Resposta a Proteínas não Dobradas/genética
5.
Org Lett ; 25(3): 461-465, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36638117

RESUMO

The synthesis of fully substituted fused pyrroles through a multicomponent reaction between a thioamide, an aldehyde, and ammonium acetate is described. This process improves on a route commonly employed in the patent literature by avoiding the use of potentially hazardous oxidants, which cause the formation of side products and require a stringent process of derisking to be utilized on scale. The reaction proceeds under mild conditions, displays excellent functional group tolerance, and facilitates diversification through multiple vectors.

6.
Nat Chem ; 15(2): 248-256, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36424454

RESUMO

Polyketide natural products often contain common repeat motifs, for example, propionate, acetate and deoxypropionate, and so can be synthesized by iterative processes. We report here a highly efficient iterative strategy for the synthesis of polyacetates based on boronic ester homologation that does not require functional group manipulation between iterations. This process involves sequential asymmetric diboration of a terminal alkene, forming a 1,2-bis(boronic ester), followed by regio- and stereoselective homologation of the primary boronic ester with a butenyl metallated carbenoid to generate a 1,3-bis(boronic ester). Each transformation independently controls the stereochemical configuration, making the process highly versatile, and the sequence can be iterated prior to stereospecific oxidation of the 1,3-polyboronic ester to yield the 1,3-polyol. This methodology has been applied to a 14-step synthesis of the oxopolyene macrolide bahamaolide A, and the versatility of the 1,3-polyboronic esters has been demonstrated in various stereospecific transformations, leading to polyalkenes, -alkynes, -ketones and -aromatics with full stereocontrol.

7.
J Biol Chem ; 299(1): 102788, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509146

RESUMO

Mechanistic target of rapamycin (mTOR) is a protein kinase that integrates multiple inputs to regulate anabolic cellular processes. For example, mTOR complex 1 (mTORC1) has key functions in growth control, autophagy, and metabolism. However, much less is known about the signaling components that act downstream of mTORC1 to regulate cellular morphogenesis. Here, we show that the RNA-binding protein Unkempt, a key regulator of cellular morphogenesis, is a novel substrate of mTORC1. We show that Unkempt phosphorylation is regulated by nutrient levels and growth factors via mTORC1. To analyze Unkempt phosphorylation, we immunoprecipitated Unkempt from cells in the presence or the absence of the mTORC1 inhibitor rapamycin and used mass spectrometry to identify mTORC1-dependent phosphorylated residues. This analysis showed that mTORC1-dependent phosphorylation is concentrated in a serine-rich intrinsically disordered region in the C-terminal half of Unkempt. We also found that Unkempt physically interacts with and is directly phosphorylated by mTORC1 through binding to the regulatory-associated protein of mTOR, Raptor. Furthermore, analysis in the developing brain of mice lacking TSC1 expression showed that phosphorylation of Unkempt is mTORC1 dependent in vivo. Finally, mutation analysis of key serine/threonine residues in the serine-rich region indicates that phosphorylation inhibits the ability of Unkempt to induce a bipolar morphology. Phosphorylation within this serine-rich region thus profoundly affects the ability of Unkempt to regulate cellular morphogenesis. Taken together, our findings reveal a novel molecular link between mTORC1 signaling and cellular morphogenesis.


Assuntos
Proteínas de Transporte , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína Regulatória Associada a mTOR , Serina-Treonina Quinases TOR , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Morfogênese , Fosforilação , Serina/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Processos de Crescimento Celular , Proteínas de Transporte/metabolismo
8.
Front Mol Neurosci ; 15: 1005631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226315

RESUMO

Mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates fundamental cellular processes including growth control, autophagy and metabolism. mTOR has key functions in nervous system development and mis-regulation of mTOR signaling causes aberrant neurodevelopment and neurological diseases, collectively called mTORopathies. In this mini review we discuss recent studies that have deepened our understanding of the key roles of the mTOR pathway in human nervous system development and disease. Recent advances in single-cell transcriptomics have been exploited to reveal specific roles for mTOR signaling in human cortical development that may have contributed to the evolutionary divergence from our primate ancestors. Cerebral organoid technology has been utilized to show that mTOR signaling is active in and regulates outer radial glial cells (RGCs), a population of neural stem cells that distinguish the human developing cortex. mTOR signaling has a well-established role in hamartoma syndromes such as tuberous sclerosis complex (TSC) and other mTORopathies. New ultra-sensitive techniques for identification of somatic mTOR pathway mutations have shed light on the neurodevelopmental origin and phenotypic heterogeneity seen in mTORopathy patients. These emerging studies suggest that mTOR signaling may facilitate developmental processes specific to human cortical development but also, when mis-regulated, cause cortical malformations and neurological disease.

9.
J Am Chem Soc ; 144(18): 7995-8001, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35499478

RESUMO

Bastimolide B is a polyhydroxy macrolide isolated from marine cyanobacteria displaying antimalarial activity. It features a dense array of hydroxylated stereogenic centers with 1,5-relationships along a hydrocarbon chain. These 1,5-polyols represent a particularly challenging motif for synthesis, as the remote position of the stereocenters hampers stereocontrol. Herein, we present a strategy for 1,5-polyol stereocontrolled synthesis based on iterative boronic ester homologation with enantiopure magnesium carbenoids. By merging boronic ester homologation and transition-metal-catalyzed alkene hydroboration and diboration, the acyclic backbone of bastimolide B was rapidly assembled from readily available building blocks with full control over the remote stereocenters, enabling the total synthesis to be completed in 16 steps (LLS).


Assuntos
Antimaláricos , Ésteres , Boro , Macrolídeos , Estereoisomerismo
10.
Methods Mol Biol ; 2431: 409-416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412289

RESUMO

Mitochondria are essential organelles that generate energy and play vital roles in cellular metabolism. The small circular mitochondrial genome encodes key components of the mitochondrial respiratory apparatus. Depletion of, or mutations in mitochondrial DNA (mtDNA) cause mitochondrial dysfunction and disease. mtDNA is packaged into nucleoids, which are transported throughout the cell within mitochondria. Efficient transport of nucleoids is essential in neurons, where mitochondrial function is required locally at synapses. Here I describe methods for visualization of nucleoids in Drosophila neurons using a GFP fusion of the mitochondrial transcription factor TFAM. TFAM-GFP, together with mCherry-labeled mitochondria, was used to visualize nucleoids in fixed larval segmental nerves. I also describe how these tools can be used for live imaging of nucleoid dynamics. Using Drosophila as a model system, these methods will enable further characterization and analysis of nucleoid dynamics in neurons.


Assuntos
DNA Mitocondrial , Drosophila , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Drosophila/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo
11.
Sci Rep ; 11(1): 16299, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381067

RESUMO

Correct orchestration of nervous system development is a profound challenge that involves coordination of complex molecular and cellular processes. Mechanistic target of rapamycin (mTOR) signaling is a key regulator of nervous system development and synaptic function. The mTOR kinase is a hub for sensing inputs including growth factor signaling, nutrients and energy levels. Activation of mTOR signaling causes diseases with severe neurological manifestations, such as tuberous sclerosis complex and focal cortical dysplasia. However, the molecular mechanisms by which mTOR signaling regulates nervous system development and function are poorly understood. Unkempt is a conserved zinc finger/RING domain protein that regulates neurogenesis downstream of mTOR signaling in Drosophila. Unkempt also directly interacts with the mTOR complex I component Raptor. Here we describe the generation and characterisation of mice with a conditional knockout of Unkempt (UnkcKO) in the nervous system. Loss of Unkempt reduces Raptor protein levels in the embryonic nervous system but does not affect downstream mTORC1 targets. We also show that nervous system development occurs normally in UnkcKO mice. However, we find that Unkempt is expressed in the adult cerebellum and hippocampus and behavioural analyses show that UnkcKO mice have improved memory formation and cognitive flexibility to re-learn. Further understanding of the role of Unkempt in the nervous system will provide novel mechanistic insight into the role of mTOR signaling in learning and memory.


Assuntos
Cognição/fisiologia , Proteínas de Ligação a DNA/metabolismo , Malformações do Desenvolvimento Cortical/metabolismo , Dedos de Zinco/fisiologia , Animais , Cerebelo/metabolismo , Drosophila/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/fisiologia , Transdução de Sinais/fisiologia
12.
Philos Trans R Soc Lond B Biol Sci ; 375(1801): 20190415, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32362256

RESUMO

Neuronal mitochondrial dysfunction causes primary mitochondrial diseases and likely contributes to neurodegenerative diseases including Parkinson's and Alzheimer's disease. Mitochondrial dysfunction has also been documented in neurodevelopmental disorders such as tuberous sclerosis complex and autism spectrum disorder. Only symptomatic treatments exist for neurodevelopmental disorders, while neurodegenerative diseases are largely untreatable. Altered mitochondrial function activates mitochondrial retrograde signalling pathways, which enable signalling to the nucleus to reprogramme nuclear gene expression. In this review, we discuss the role of mitochondrial retrograde signalling in neurological diseases. We summarize how mitochondrial dysfunction contributes to neurodegenerative disease and neurodevelopmental disorders. Mitochondrial signalling mechanisms that have relevance to neurological disease are discussed. We then describe studies documenting retrograde signalling pathways in neurons and glia, and in animal models of neuronal mitochondrial dysfunction and neurological disease. Finally, we suggest how specific retrograde signalling pathways can be targeted to develop novel treatments for neurological diseases. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.


Assuntos
Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Transdução de Sinais , Animais , Modelos Animais de Doenças , Humanos
13.
Dev Biol ; 461(1): 55-65, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978396

RESUMO

The formation of a complex nervous system requires the coordinated action of progenitor cell proliferation, differentiation and maturation. The Drosophila postembryonic central nervous system provides a powerful model for dissecting the cellular and molecular mechanisms underpinning neurogenesis. We previously identified the conserved zinc finger/RING protein Unkempt (Unk) as a key temporal regulator of neuronal differentiation in the Drosophila developing eye and showed that Unk acts downstream of the mechanistic target of rapamycin (mTOR) pathway together with its binding partner Headcase (Hdc). Here we investigate the role of Unk in Drosophila postembryonic thoracic neurogenesis. The Drosophila central nervous system contains neural stem cells, called neuroblasts, and neural progenitors, known as ganglion mother cells (GMCs). Unk is highly expressed in the central brain and ventral nerve cord but is not required to maintain neuroblast numbers or for the regulation of temporal series factor expression in neuroblasts. However, loss of Unk increases the number of neuroblasts and GMCs in S-phase of the cell cycle, resulting in the overproduction of neurons. We also show that Unk interacts with Hdc through its zinc finger domain. The zinc finger domain is required for the synergistic activity of Unk with Hdc during eye development but is not necessary for the activity of Unk in thoracic neurogenesis. Overall, this study shows that Unk and Hdc are novel negative regulators of neurogenesis in Drosophila and indicates a conserved role of mTOR signalling in nervous system development.


Assuntos
Sistema Nervoso Central/embriologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Olho/embriologia , Células-Tronco Neurais/citologia , Animais , Ciclo Celular/genética , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Proteínas Associadas à Matriz Nuclear/metabolismo
14.
J Cell Biol ; 218(12): 4007-4016, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31645461

RESUMO

Mitochondrial stress contributes to a range of neurological diseases. Mitonuclear signaling pathways triggered by mitochondrial stress remodel cellular physiology and metabolism. How these signaling mechanisms contribute to neuronal dysfunction and disease is poorly understood. We find that mitochondrial stress in neurons activates the transcription factor ATF4 as part of the endoplasmic reticulum unfolded protein response (UPR) in Drosophila We show that ATF4 activation reprograms nuclear gene expression and contributes to neuronal dysfunction. Mitochondrial stress causes an ATF4-dependent increase in the level of the metabolite L-2-hydroxyglutarate (L-2-HG) in the Drosophila brain. Reducing L-2-HG levels directly, by overexpressing L-2-HG dehydrogenase, improves neurological function. Modulation of L-2-HG levels by mitochondrial stress signaling therefore regulates neuronal function.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Glutaratos/metabolismo , Mitocôndrias/metabolismo , Neurônios/patologia , Fatores de Transcrição/metabolismo , Animais , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Feminino , Masculino , Mucosa/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas
15.
PLoS Genet ; 14(7): e1007567, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30059502

RESUMO

Mitochondrial dysfunction activates the mitochondrial retrograde signaling pathway, resulting in large scale changes in gene expression. Mitochondrial retrograde signaling in neurons is poorly understood and whether retrograde signaling contributes to cellular dysfunction or is protective is unknown. We show that inhibition of Ras-ERK-ETS signaling partially reverses the retrograde transcriptional response to alleviate neuronal mitochondrial dysfunction. We have developed a novel genetic screen to identify genes that modify mitochondrial dysfunction in Drosophila. Knock-down of one of the genes identified in this screen, the Ras-ERK-ETS pathway transcription factor Aop, alleviates the damaging effects of mitochondrial dysfunction in the nervous system. Inhibition of Ras-ERK-ETS signaling also restores function in Drosophila models of human diseases associated with mitochondrial dysfunction. Importantly, Ras-ERK-ETS pathway inhibition partially reverses the mitochondrial retrograde transcriptional response. Therefore, mitochondrial retrograde signaling likely contributes to neuronal dysfunction through mis-regulation of gene expression.


Assuntos
Drosophila/fisiologia , Regulação da Expressão Gênica/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Doença de Leigh/genética , Doença de Leigh/patologia , Masculino , Proteínas Mitocondriais/genética , Neurônios/citologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas ras/metabolismo
16.
FEBS Lett ; 592(5): 663-678, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29086414

RESUMO

Mitochondria generate the majority of cellular ATP and are essential for neuronal function. Loss of mitochondrial activity leads to primary mitochondrial diseases and may contribute to neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Mitochondria communicate with the cell through mitochondrial retrograde signaling pathways. These signaling pathways are triggered by mitochondrial dysfunction and allow the organelle to control nuclear gene transcription. Neuronal mitochondrial retrograde signaling pathways have been identified in disease model systems and targeted to restore neuronal function and prevent neurodegeneration. In this review, we describe yeast and mammalian cellular models that have paved the way in the investigation of mitochondrial retrograde mechanisms. We then discuss the evidence for retrograde signaling in neurons and our current knowledge of retrograde signaling mechanisms in neuronal model systems. We argue that targeting mitochondrial retrograde pathways has the potential to lead to novel treatments for neurological diseases.


Assuntos
Doença de Alzheimer/metabolismo , Sistema Nervoso Central/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Transdução de Sinais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Chem Sci ; 8(4): 2898-2903, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451355

RESUMO

Diborylmethane can be homologated uni- and bidirectionally by using enantiomerically pure lithium-stabilized carbenoids to give 1,2- and 1,3-bis(boronic esters), respectively, in good yield and with excellent levels of enantio- and diastereoselectivity. The high sensitivity of the transformation to steric hindrance enables the exclusive operation of either manifold, effected through the judicious choice of the type of carbenoid, which can be a sparteine-ligated or a diamine-free lithiated benzoate/carbamate. The scope of the 1,2-bis(boronic esters) so generated is complementary to that encompassed by the asymmetric diboration of alkenes, in that primary-secondary and primary-tertiary 1,2-bis(boronic esters) can be prepared with equally high levels of selectivity and that functional groups, such as terminal alkynes and alkenes, are tolerated. Methods for forming C2-symmetric and non-symmetrical anti and syn 1,3-bis(boronic esters) are also described and represent a powerful route towards 1,3-functionalized synthetic intermediates.

18.
Angew Chem Int Ed Engl ; 55(47): 14663-14667, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27781356

RESUMO

1,2-Bis(boronic esters), derived from the enantioselective diboration of terminal alkenes, can be selectively homologated at the primary boronic ester by using enantioenriched primary/secondary lithiated carbamates or benzoates to give 1,3-bis(boronic esters), which can be subsequently oxidized to the corresponding secondary-secondary and secondary-tertiary 1,3-diols with full stereocontrol. The transformation was applied to a concise total synthesis of the 14-membered macrolactone, Sch 725674. The nine-step synthetic route also features a novel desymmetrizing enantioselective diboration of a divinyl carbinol derivative and high-yielding late-stage cross-metathesis and Yamaguchi macrolactonization reactions.

19.
Fly (Austin) ; 10(1): 19-24, 2016 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27064199

RESUMO

Mitochondrial dysfunction has been suggested to contribute to neurodegenerative diseases, including Alzheimer and Parkinson disease. Cells respond to changes in the functional state of mitochondria via retrograde signaling pathways from the mitochondria to the nucleus, but little is known about retrograde signaling in the nervous system. We have recently shown that inhibition of retrograde signaling reduces the impact of neuronal mitochondrial dysfunction. We performed a study designed to characterize the mitochondrial retrograde signaling pathway in the Drosophila nervous system. Using several different models we found that neuronal specific mitochondrial dysfunction results in defects in synapse development and neuronal function. Moreover, we identified the Drosophila hypoxia inducible factor α (HIFα) ortholog Sima as a key neuronal transcriptional regulator. Knock-down of sima restores function in several Drosophila models of mitochondrial dysfunction, including models of human disease. Here we discuss these findings and speculate on the potential benefits of inhibition of retrograde signaling. We also describe how our results relate to other studies of mitochondrial retrograde signaling and the potential therapeutic applications of these discoveries.


Assuntos
Núcleo Celular/metabolismo , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Transdução de Sinais , Animais , Drosophila , Humanos , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia
20.
Mov Disord ; 31(3): 352-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26853899

RESUMO

BACKGROUND: Dementia is a common feature of Parkinson's disease (PD), but the neuropathological changes associated with the development of Parkinson's disease dementia (PDD) are only partially understood. Mitochondrial dysfunction is a hallmark of PD but has not been studied in PDD. METHODS: Molecular and biochemical approaches were used to study mitochondrial activity and quantity in postmortem prefrontal cortex tissue. Tissues from pathologically confirmed PD and PDD patients and from age-matched controls were used to analyze the activity of mitochondrial enzyme complex nicotinamide adenine dinucleotide:ubiquinone oxidoreductase, or complex I (the first enzyme in the mitochondrial respiratory chain), mitochondrial DNA levels, and the expression of mitochondrial proteins. RESULTS: Complex I activity was significantly decreased (27% reduction; analysis of variance with Tukey's post hoc test; P < 0.05) in PDD patients, and mitochondrial DNA levels were also significantly decreased (18% reduction; Kruskal-Wallis analysis of variance with Dunn's multiple comparison test; P < 0.05) in PDD patients compared with controls, but neither was significantly reduced in PD patients. Overall, mitochondrial biogenesis was unaffected in PD or PDD, because the expression of mitochondrial proteins in patients was similar to that in controls. CONCLUSIONS: Patients with PDD have a deficiency in mitochondrial complex I activity and reduced mitochondrial DNA levels in the prefrontal cortex without a change in mitochondrial protein quantity. Therefore, mitochondrial complex I deficiency and reduced mitochondrial DNA in the prefrontal cortex may be a hallmark of dementia in patients with PD.


Assuntos
Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/etiologia , Proteínas Mitocondriais/metabolismo , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Demência/complicações , Demência/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Doenças Mitocondriais/complicações , Doenças Mitocondriais/metabolismo , Doença de Parkinson/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...